Gaussian effective potential and Coleman's normal-ordering prescription: the functional integral formalism

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 35393
(http://iopscience.iop.org/0305-4470/35/2/315)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.107
The article was downloaded on 02/06/2010 at 10:09

Please note that terms and conditions apply.

Gaussian effective potential and Coleman's normal-ordering prescription: the functional integral formalism

Wen-Fa Lu ${ }^{1}$ and Chul Koo Kim
Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea and
Center for Strongly Correlated Materials Research, Seoul National University, Seoul 151-742, Korea
E-mail: wenfalu@online.sh.cn

Received 24 May 2001, in final form 31 October 2001
Published 4 January 2002
Online at stacks.iop.org/JPhysA/35/393

Abstract

For a class of systems, the potential of whose bosonic Hamiltonian has a Fourier representation in the sense of tempered distributions, we calculate the Gaussian effective potential within the framework of the functional integral formalism. We show that Coleman's normal-ordering prescription can be formally generalized to the functional integral formalism.

PACS numbers: $02.30 . \mathrm{Sa}, 03.50 .-\mathrm{z}, 45.20 .-\mathrm{d}$

Recently, one of the authors, Lu , with his other collaborators obtained formulae of the Gaussian effective potential (GEP) [1] for a relatively general scalar field theory (see equation (1)) in the functional Schrödinger picture [2]. There, Coleman's normal-ordering prescription [3] was used, and accordingly these formulae have no divergences in low dimensions. Employing these formulae, one can obtain the GEP of any system in a certain class of models, which will be specified below, by carrying out ordinary integrations without performing functional integrations. In this paper, we demonstrate that the same formulae of the GEP can also be obtained within the functional integral formalism. In doing so, we also show that, although quantities in the functional integral formalism are not operators, Coleman's normal-ordering prescription can be formally used for renormalizing the GEP in the cases of low dimensions. We believe that our simple work is interesting and useful since the functional integral formalism is important in quantum field theory, nuclear and condensed matter physics [4], and can be used for performing some variational perturbation schemes [5, 6].

In this paper, we first generalize Coleman's normal-ordering prescription to the functional integral formalism. This formal generalization will be realized by borrowing the normalordered Hamiltonian expression in the functional Schrödinger picture because the Euclidean
${ }^{1}$ Permanent address: Department of Physics, Institute for Theoretical Physics, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.
action for a system has the same form as the corresponding classical Hamiltonian in Minkowski space. Then following the procedure in [6], we calculate the GEP for a class of systems. Finishing the above generalization, as an explicit illustration, we will perform a model calculation for the $\lambda \phi^{4}$ field theory.

Consider a class of systems, scalar field systems or Fermi field systems which can be bosonized with the Lagrangian density

$$
\begin{equation*}
\mathcal{L}_{x}=\frac{1}{2} \partial_{\mu} \phi_{x} \partial^{\mu} \phi_{x}-V\left(\phi_{x}\right) \tag{1}
\end{equation*}
$$

where the subscript x represents $x=(\vec{x}, t)$, the coordinates in a $(D+1)$-dimensional Minkowski space, ∂_{μ} and ∂^{μ} are the corresponding covariant derivatives, and ϕ_{x} the scalar field at x. In equation (1), the potential $V\left(\phi_{x}\right)$ has a Fourier representation in the sense of tempered distributions [7]. Speaking roughly, this requires that the integral $\int_{-\infty}^{\infty} V(\alpha) \mathrm{e}^{-C \alpha^{2}} \mathrm{~d} \alpha$ with a positive constant C is finite. Obviously, quite a number of model potentials, such as polynomial models, sine-Gordon and sinh-Gordon models, possess this property.

For the system of equation (1), the conjugate field momentum is expressed as $\Pi_{x} \equiv$ $\frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \phi_{x}\right)}=\partial_{t} \phi_{x}$ and the Hamiltonian density is given by

$$
\begin{equation*}
\mathcal{H}_{x}=\frac{1}{2} \partial_{t} \phi_{x} \partial_{t} \phi_{x}+\frac{1}{2} \partial_{\bar{x}} \phi_{x} \partial_{\bar{x}} \phi_{x}+V\left(\phi_{x}\right) . \tag{2}
\end{equation*}
$$

In a time-fixed functional Schrödinger picture at $t=0$, one can normal-order the Hamiltonian density \mathcal{H}_{x} with respect to any given mass-dimension constant M as follows [2, 3] ${ }^{2}$:
$\mathcal{N}_{M}\left[\mathcal{H}_{\vec{x}}\right]=\frac{1}{2} \partial_{t} \phi_{x} \partial_{t} \phi_{x}+\frac{1}{2} \partial_{\vec{x}} \phi_{\vec{x}} \partial_{\vec{x}} \phi_{\vec{x}}+\mathcal{N}_{M}\left[V\left(\phi_{\vec{x}}\right)\right]-\frac{1}{2} I_{0}\left[M^{2}\right]+\frac{1}{4} M^{2} I_{1}\left[M^{2}\right]$
where $\mathcal{N}_{M}[\cdots]$ means the normal-ordering form with respect to M and

$$
\begin{equation*}
I_{n}\left[Q^{2}\right]=\int \frac{\mathrm{d}^{D} p}{(2 \pi)^{D}} \frac{\sqrt{p^{2}+Q^{2}}}{\left(p^{2}+Q^{2}\right)^{n}} \tag{4}
\end{equation*}
$$

Noticing the Baker-Haussdorf formula $\mathrm{e}^{A+B}=\mathrm{e}^{A} \mathrm{e}^{B} \mathrm{e}^{-\frac{1}{2}[A, B]}$, with the commutator $[A, B]$ some c-number, one has

$$
\begin{equation*}
\mathcal{N}_{M}\left[V\left(\phi_{\vec{x}}\right)\right]=\int \frac{\mathrm{d} \Omega}{\sqrt{2 \pi}} \tilde{V}(\Omega) \mathrm{e}^{\mathrm{i} \Omega \phi_{\vec{x}}} \mathrm{e}^{\frac{1}{4} \Omega^{2} I_{1}\left[M^{2}\right]} \tag{5}
\end{equation*}
$$

where $\tilde{V}(\Omega)$ is the Fourier component of the function $V(\alpha)$. In the functional Schrödinger picture, when the Coleman's normal-ordering prescription [3] is adopted to calculate the GEP, i.e., when the normal-ordering Hamiltonian density takes the place of Hamiltonian density, the GEP will be naturally finite for the case of low dimensions $(D<3)$ [2].

On the other hand, for equation (1), the generating functional for Green's functions in the functional integral formalism is given by

$$
\begin{equation*}
Z_{M}[J]=\int \mathcal{D} \phi \exp \left\{\mathrm{i} \int \mathrm{~d}^{D} \vec{x} \mathrm{~d} t\left[\mathcal{L}_{x}+J_{x} \phi_{x}\right]\right\} \tag{6}
\end{equation*}
$$

where J_{x} is an external source at x and $\mathcal{D} \phi$ the functional measure. Starting from equation (6), one can define the effective potential [8]. However, in this functional integral, the integrand is oscillatory. To avoid this oscillation, one usually adopts the so-called ϵ-prescription, i.e. in the Lagrangian density, one adds an infinitesimal purely imaginary term, $\mathrm{i} \epsilon \phi_{x}^{2}$, and takes $\epsilon \rightarrow 0$ after finishing the functional integration. Instead of doing so, one can also make the time continuation $t \rightarrow-\mathrm{i} \tau$ so that Minkowski space can be transformed into Euclidean space, and after finishing the functional integration, one may return to Minkowski space. This time continuation procedure is equivalent to the ϵ-prescription [8]. In this paper, we will choose the continuation procedure.

[^0]Through the time continuation $t \rightarrow-\mathrm{i} \tau$, the generating functional $Z_{M}[J]$ is changed as
$Z[J]=\int \mathcal{D} \phi \exp \left\{-\int \mathrm{d}^{v} r\left[\frac{1}{2} \partial_{\tau} \phi_{r} \partial_{\tau} \phi_{r}+\frac{1}{2} \partial_{\vec{x}} \phi_{r} \partial_{\vec{x}} \phi_{r}+V\left(\phi_{r}\right)-J_{r} \phi_{r}\right]\right\}$
with $r=(\vec{x}, \tau)$ and $v=D+1$. This is the generating functional in the Euclidean space. Here, we emphasize that in the above equation, taking the range of τ as $[0, \beta]$ with the inverse temperature β, letting J_{r} vanish and carrying out the functional integration over the closed path $\left.\phi_{r}\right|_{\tau=0}=\left.\phi_{r}\right|_{\tau=\beta}$, one can arrive at the canonical partition function of equation (1). From equation (7) one can get the generating functional for the connected Green's function, $W[J]=\ln (Z[J])$. The variational derivative of $W[J]$ with respect to J will give rise to the vacuum expectation value of the field ϕ_{r} in the presence of J_{r},

$$
\begin{equation*}
\varphi_{r}=\frac{\delta W[J]}{\delta J_{r}} \tag{8}
\end{equation*}
$$

Taking a Legendre transformation of $W[J]$, one can define the effective potential in Euclidean space,

$$
\begin{equation*}
\mathcal{V}(\varphi)=-\left.\frac{W[J]-\int \mathrm{d}^{\nu} r J_{r} \varphi_{r}}{\int \mathrm{~d}^{v} r}\right|_{\varphi_{r}=\varphi} \tag{9}
\end{equation*}
$$

where φ is independent of the coordinate r. Returning to the Minkowski space from equation (9), one can get the effective potential in the Minkowski space, which is usually referred to as the effective potential in quantum field theory.

In the exponential of the functional integrand of equation (7), the major part of the integrand $\mathcal{H}_{r}=\frac{1}{2} \partial_{\tau} \phi_{r} \partial_{\tau} \phi_{r}+\frac{1}{2} \partial_{\vec{x}} \phi_{r} \partial_{\vec{x}} \phi_{r}+V\left(\phi_{r}\right)$ takes the same form as \mathcal{H}_{x} in equation (2). Therefore, we argue that, if we change \mathcal{H}_{r} in equation (7) into the expression ${ }^{3} \mathcal{N}_{M}\left[\mathcal{H}_{r}\right]$, the GEP will be renormalized automatically in the low dimensions $(D<3)$. Note that in the transformation between Euclidean space and Minkowski space, the integrals $I_{(n)}\left[Q^{2}\right]$ appearing in the functional integrations in Euclidean space,

$$
I_{(n)}\left[Q^{2}\right]= \begin{cases}\int \frac{\mathrm{d}^{v} p}{(2 \pi)^{v}} \frac{1}{\left(p^{2}+Q^{2}\right)^{n}} & \text { for } n \neq 0 \tag{10}\\ \int \frac{\mathrm{~d}^{v} p}{(2 \pi)^{v}} \ln \left(p^{2}+Q^{2}\right) & \text { for } n=0\end{cases}
$$

are equivalent to $I_{n}\left[Q^{2}\right]$ in equation (4) which appear in the calculations in the functional Schrödinger picture (up to some constant factor or an infinite constant for some n) [6]. For example, $I(0)\left[Q^{2}\right]$ is equivalent to $I_{0}\left[Q^{2}\right]$ (up to an infinite constant) and $2 I_{(1)}\left[Q^{2}\right]$ to $I_{1}\left[Q^{2}\right]$ [6]. Thus, corresponding to equation (3), one can formally write down $\mathcal{N}_{M}\left[\mathcal{H}_{r}\right]=\frac{1}{2} \partial_{\tau} \phi_{r} \partial_{\tau} \phi_{r}+$ $\frac{1}{2} \partial_{\vec{x}} \phi_{r} \partial_{\vec{x}} \phi_{r}+\mathcal{N}_{M}\left[V\left(\phi_{r}\right)\right]-\frac{1}{2} I_{(0)}\left[M^{2}\right]+\frac{1}{2} M^{2} I_{(1)}\left[M^{2}\right]$. Changing \mathcal{H}_{r} in equation (7) into the form of $\mathcal{N}_{M}\left[\mathcal{H}_{r}\right]$, we have

$$
\begin{align*}
Z[J]=\exp \{ & \left.\int \mathrm{d}^{v} r\left[\frac{1}{2} I_{(0)}\left[M^{2}\right]-\frac{1}{2} M^{2} I_{(1)}\left[M^{2}\right]\right]\right\} \\
& \times \int \mathcal{D} \phi \exp \left\{-\int \mathrm{d}^{v} r\left[\frac{1}{2} \partial_{\tau} \phi_{r} \partial_{\tau} \phi_{r}+\frac{1}{2} \partial_{\vec{x}} \phi_{r} \partial_{\vec{x}} \phi_{r}\right.\right. \\
& \left.\left.-J_{r} \phi_{r}+\int \frac{\mathrm{d} \Omega}{\sqrt{2 \pi}} \tilde{V}(\Omega) \mathrm{e}^{\mathrm{i} \Omega \phi_{r}} \mathrm{e}^{\frac{1}{2} \Omega^{2} I_{(1)}\left[M^{2}\right]}\right]\right\} \\
= & \exp \left\{\int \mathrm{d}^{v} r\left[\frac{1}{2} I_{(0)}\left[M^{2}\right]-\frac{1}{2} M^{2} I_{(1)}\left[M^{2}\right]\right]\right\} \int \mathcal{D} \phi \exp \{-S[J]\} \tag{11}
\end{align*}
$$

[^1]where $S[J]=\int \mathrm{d}^{v} r\left[\frac{1}{2} \phi_{r}\left(-\nabla_{r}^{2}\right) \phi_{r}-J_{r} \phi_{r}+\int \frac{\mathrm{d} \Omega}{\sqrt{2 \pi}} \tilde{V}(\Omega) \mathrm{e}^{\mathrm{i} \Omega \phi_{r}} \mathrm{e}^{\frac{1}{2} \Omega^{2} I_{(1)}\left[M^{2}\right]}\right]$ with ∇_{r} the gradient with respect to r in ν-dimensional Euclidean space. Up to here, we have introduced Coleman's normal-ordering prescription in the functional integral formalism. Actually, many years ago, the normal-ordered Hamiltonian of the sine-Gordon field theory was used in the Euclidean functional integral formalism to show the equivalence between the sine-Gordon and massive Thirring field theories [9]. One will see that equation (11) will give rise to the same result in [2].

Now we calculate the GEP of equation (1) from equation (11) by using the procedure in [6]. For this purpose, $Z[J]$ will be modified through the following steps. First, a parameter μ is introduced by adding a vanishing term $\int \mathrm{d}^{\nu} r \frac{1}{2} \phi_{r}\left(\mu^{2}-\mu^{2}\right) \phi_{r}$ into $S[J]$. Then, shift ϕ_{r} to $\phi_{r}+\Phi$ with Φ a constant background field, i.e., $S[J] \rightarrow \int \mathrm{d}^{\nu} r\left[\frac{1}{2} \phi_{r}\left(-\nabla_{r}^{2}+\mu^{2}\right) \phi_{r}-J_{r} \phi_{r}-J_{r} \Phi+S_{D}\right]$ with $S_{D}=\int \mathrm{d}^{\nu} r\left[-\frac{1}{2} \mu^{2} \phi_{r}^{2}+\int \frac{\mathrm{d} \Omega}{\sqrt{2 \pi}} \tilde{V}(\Omega) \mathrm{e}^{\mathrm{i} \Omega\left(\phi_{r}+\Phi\right)} \mathrm{e}^{\frac{1}{2} \Omega^{2} I_{(1)}\left[M^{2}\right]}\right]$. Third, in the last resultant expression of $S[J]$, insert an expansion factor δ in front of S_{D}. Thus, $Z[J]$ is modified as the following $Z[J, \delta]$:

$$
\begin{align*}
Z[J, \delta]=\exp & \left\{\int \mathrm{d}^{\nu} r\left[\frac{1}{2} I_{(0)}\left[M^{2}\right]-\frac{1}{2} M^{2} I_{(1)}\left[M^{2}\right]+J_{r} \Phi\right]\right\} \\
& \times \int \mathcal{D} \phi \exp \left\{-\int \mathrm{d}^{\nu} r\left[\frac{1}{2} \phi_{r}\left(-\nabla_{r}^{2}+\mu^{2}\right) \phi_{r}-J_{r} \phi_{r}\right]\right\} \exp \left\{-\delta S_{D}\right\} \tag{12}\\
= & {\left[\operatorname{det}\left(-\nabla_{r}^{2}+\mu^{2}\right)\right]^{-\frac{1}{2}} \exp \left\{\int \mathrm { d } ^ { \nu } r \left[\frac{1}{2} I_{(0)}\left[M^{2}\right]-\frac{1}{2} M^{2} I_{(1)}\left[M^{2}\right]\right.\right.} \\
& \left.\left.+\frac{1}{2} \int \mathrm{~d}^{\nu} r_{1} J_{r} f_{r r_{1}}^{-1} J_{r_{1}}+J_{r} \Phi\right]\right\} \\
& \times \frac{\int \mathcal{D} \phi \exp \left\{-\int \mathrm{d}^{\nu} r\left[\frac{1}{2} \phi_{r}\left(-\nabla_{r}^{2}+\mu^{2}\right) \phi_{r}-J_{r} \phi_{r}\right]\right\} \exp \left\{-\delta S_{D}\right\}}{\int \mathcal{D} \phi \exp \left\{-\int \mathrm{d}^{v} r\left[\frac{1}{2} \phi_{r}\left(-\nabla_{r}^{2}+\mu^{2}\right) \phi_{r}-J_{r} \phi_{r}\right]\right\}} \tag{13}
\end{align*}
$$

where $\operatorname{det}\left(-\nabla_{r}^{2}+\mu^{2}\right)$ is the determinant of $\left(-\nabla_{r}^{2}+\mu^{2}\right)$ and $f_{r r_{1}}^{-1}=\int \frac{\mathrm{d}^{v} p}{(2 \pi)^{v}} \frac{1}{p^{2}+\mu^{2}} \mathrm{e}^{\mathrm{i} p \cdot\left(r-r_{1}\right)}$. In equation (13), the result of the Gaussian functional integral $\int \mathcal{D} \phi \exp \left\{-\int \mathrm{d}^{\nu} r\right.$ $\left.\left[\frac{1}{2} \phi_{r}\left(-\nabla_{r}^{2}+\mu^{2}\right) \phi_{r}-J_{r} \phi_{r}\right]\right\}=\left[\operatorname{det}\left(-\nabla_{r}^{2}+\mu^{2}\right)\right]^{-\frac{1}{2}} \exp \left\{\frac{1}{2} \int \mathrm{~d}^{\nu} r \mathrm{~d}^{\nu} r_{1} J_{r} f_{r r_{1}}^{-1} J_{r_{1}}\right\}$ has been used. Correspondingly, $W[J]$ is modified as $W[J, \delta]$. It is evident that, extrapolating $W[J, \delta]$ to $\delta=1$, one recovers $W[J]$. After the above modifications, expanding the logarithm of the functional integral in $W[J, \delta]=\ln Z[J, \delta]$ as a series in δ (i.e. expanding first $\mathrm{e}^{-\delta S_{D}}$ and then the logarithmic function), then truncating the series at the first order in δ, and finally carrying out the functional integrations, one has

$$
\begin{align*}
W[J, \delta]=\int \mathrm{d}^{\nu} r & \left\{-\frac{1}{2}\left(I_{(0)}\left[\mu^{2}\right]-I_{(0)}\left[M^{2}\right]\right)-\frac{1}{2} M^{2} I_{(1)}\left[M^{2}\right]+J_{r} \Phi+\frac{1}{2} \int \mathrm{~d}^{\nu} r_{1} J_{r} f_{r_{1} r}^{-1} J_{r_{1}}\right. \\
& +\delta\left[\frac{1}{2} \mu^{2}\left[I_{(1)}\left[\mu^{2}\right]+\left(\int \mathrm{d}^{\nu} r_{1} f_{r r_{1}}^{-1} J_{r_{1}}\right)^{2}\right]\right. \\
& \left.\left.-\int_{-\infty}^{\infty} \frac{\mathrm{d} \alpha}{\sqrt{\pi}} V\left(\alpha \sqrt{2\left(I_{(1)}\left[\mu^{2}\right]-I_{(1)}\left[M^{2}\right]\right)}+\int \mathrm{d}^{\nu} r_{1} f_{r_{1} r}^{-1} J_{r_{1}}+\Phi\right) \mathrm{e}^{-\alpha^{2}}\right]\right\} \tag{14}
\end{align*}
$$

where the first-order term of δ arises from the functional integral $\frac{\int \mathcal{D} \phi S_{D} \exp \left\{-\int \mathrm{d}^{\mathrm{d}} r\left[\frac{1}{2} \phi_{r}\left(-\nabla_{r}^{2}+\mu^{2}\right) \phi_{r}-J_{r} \phi_{r}\right]\right\}}{\int \mathcal{D} \phi \exp \left\{-\int \mathrm{d}^{r} r\left[\frac{1}{2} \phi_{r}\left(-\nabla_{r}^{2}+\mu^{2}\right) \phi_{r}-J_{r} \phi_{r}\right]\right\}}$. In equation (14), we have used the integral formula $\int_{-\infty}^{\infty} \frac{\mathrm{d} \alpha}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{\alpha^{2}}{2}+\sqrt{2 a} \alpha}=\mathrm{e}^{a}$ and the result $\left[\operatorname{det}\left(-\nabla_{r}^{2}+\mu^{2}\right)\right]^{-\frac{1}{2}}=\exp \left\{-\frac{1}{2} \int \mathrm{~d}^{\nu} r I_{0}\left[\mu^{2}\right]\right\}$.

Therefore, up to the first order of δ, equation (8) gives

$$
\begin{gather*}
\varphi_{r}=\Phi+\int \mathrm{d}^{\nu} r_{1} f_{r r_{1}}^{-1} J_{r_{1}}+\delta \mu^{2} \int \mathrm{~d}^{\nu} r_{1} \mathrm{~d}^{\nu} r_{2} f_{r r_{1}}^{-1} f_{r_{1} r_{2}}^{-1} J_{r_{2}}-\delta \int \mathrm{d}^{v} r_{1} f_{r r_{1}}^{-1} \int_{-\infty}^{\infty} \frac{\mathrm{d} \alpha}{\sqrt{\pi}} V^{(1)} \\
\times\left(\alpha \sqrt{2\left(I_{(1)}\left[\mu^{2}\right]-I_{(1)}\left[M^{2}\right]\right)}+\int \mathrm{d}^{\nu} r_{1} f_{r r_{1}}^{-1} J_{r_{1}}+\Phi\right) \mathrm{e}^{-\alpha^{2}} \tag{15}
\end{gather*}
$$

where $V^{(n)}(\alpha)=\frac{\mathrm{d}^{n} V(\alpha)}{(\mathrm{d} \alpha)^{n}}=\int \frac{\mathrm{d} \Omega}{\sqrt{2 \pi}} \tilde{V}(\Omega)(\mathrm{i} \Omega)^{n} \mathrm{e}^{\mathrm{i} \Omega \alpha}$. In the last equation, one can take ${ }^{4} \varphi_{r}=$ $\varphi=\Phi$ and hence solve it to get J_{r} in terms of Φ. This forces J_{r} to become a series in δ and vanish in the zeroth order of δ [6]. From equations (14) and (9), one can see that J_{r} truncated at the first order of δ has no contribution to $\mathcal{V}(\varphi)$ up to the first order of δ. Therefore, we have to take $J_{r}=0$ for truncating equation (9) at the first order of δ and obtain the following result:

$$
\begin{align*}
\mathcal{V}(\Phi)=\frac{1}{2}\left(I_{(0)}\right. & {\left.\left[\mu^{2}\right]-I_{(0)}\left[M^{2}\right]\right)+\frac{1}{2} M^{2} I_{(1)}\left[M^{2}\right]-\frac{1}{2} \mu^{2} I_{(1)}\left[\mu^{2}\right] } \\
& +\int_{-\infty}^{\infty} \frac{\mathrm{d} \alpha}{\sqrt{\pi}} \mathrm{e}^{-\alpha^{2}} V\left(\alpha \sqrt{2\left(I_{(1)}\left[\mu^{2}\right]-I_{(1)}\left[M^{2}\right]\right)}+\Phi\right) . \tag{16}
\end{align*}
$$

Obviously, the above equation is dependent on the arbitrary parameter μ. In accordance with the 'principle of minimal sensitivity' $[6,10], \mu$ can be determined by requiring that μ should minimize $\mathcal{V}(\varphi)$. The stationary condition, $\frac{\partial \mathcal{V}(\varphi)}{\partial \mu^{2}}=0$, yields

$$
\begin{equation*}
\mu^{2}(\varphi)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \alpha}{\sqrt{\pi}} \mathrm{e}^{-\alpha^{2}} V^{(2)}\left(\alpha \sqrt{2\left(I_{(1)}\left[\mu^{2}\right]-I_{(1)}\left[M^{2}\right]\right)}+\Phi\right) \tag{17}
\end{equation*}
$$

and the stability condition, $\frac{\partial^{2} \mathcal{V}(\varphi)}{\left(\partial \mu^{2}\right)^{2}} \geqslant 0$, gives rise to

$$
\begin{equation*}
1+\frac{1}{4} I_{(2)}\left[\mu^{2}\right] \int_{-\infty}^{\infty} \frac{\mathrm{d} \alpha}{\sqrt{\pi}} \mathrm{e}^{-\alpha^{2}} V^{(4)}\left(\alpha \sqrt{2\left(I_{(1)}\left[\mu^{2}\right]-I_{(1)}\left[M^{2}\right]\right)}+\Phi\right) \geqslant 0 . \tag{18}
\end{equation*}
$$

In order to investigate the symmetry-breaking phenomena, one usually needs another stationary point condition $\frac{d \mathcal{V}(\varphi)}{d \varphi}=0$. This condition yields

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\mathrm{d} \alpha}{\sqrt{\pi}} \mathrm{e}^{-\alpha^{2}} V^{(1)}\left(\alpha \sqrt{2\left(I_{(1)}\left[\mu^{2}\right]-I_{(1)}\left[M^{2}\right]\right)}+\Phi\right)=0 \tag{19}
\end{equation*}
$$

Noticing the equivalence between $I_{(n)}\left[Q^{2}\right]$ and $I_{n}\left[Q^{2}\right]$, and going back to the Minkowski space, equation (16) with equations (17) and (18) will give the GEP of the system, equation (1). We note that it is identical to that in [2]. We observe that, here, no renormalization procedure is needed for the case of $D<3$, because the first three terms in equation (16) and $\left(I_{(1)}\left[\mu^{2}\right]-I_{(1)}\left[M^{2}\right]\right)$ are finite for $\mathrm{D}<3$. As for the case of $D=3$, the first three terms in equation (16) and $\left(I_{(1)}\left[\mu^{2}\right]-I_{(1)}\left[M^{2}\right]\right)$ are divergent, and so equations (16)-(19) have divergences. Hence, when $D=3$, Coleman's normal-ordering prescription is not sufficient to renormalize the GEP, and further renormalization procedures are needed. In fact, Coleman's normal-ordering prescription amounts just to renormalizing the mass parameter. For the case of $D=3$, one can further renormalize other model parameters and even the field to make the GEP finite.

By way of explanation and justification, we consider the $\lambda \phi^{4}$ field theory with the following potential:

$$
\begin{equation*}
V\left(\phi_{x}\right)=\frac{1}{2} m^{2} \phi_{x}^{2}+\frac{\lambda}{4} \phi_{x}^{4} . \tag{20}
\end{equation*}
$$

[^2]Employing the formulae $\int_{-\infty}^{\infty} \alpha^{2 n} \mathrm{e}^{-\alpha^{2}} \mathrm{~d} \alpha=2^{-n} \cdot 1 \cdot 3 \cdot 5 \cdots(2 n-1)$ and $\int_{-\infty}^{\infty} \alpha^{2 n+1} \mathrm{e}^{-\alpha^{2}} \mathrm{~d} \alpha=0$, one can easily finish the ordinary integrations over α in equations (16)-(19), and obtain

$$
\begin{align*}
& \begin{aligned}
\mathcal{V}(\varphi)=\frac{1}{2}\left(I_{(0)}\right. & {\left.\left[\mu^{2}\right]-I_{(0)}\left[M^{2}\right]\right)+\frac{1}{2} M^{2} I_{(1)}\left[M^{2}\right]-\frac{1}{2} \mu^{2} I_{(1)}\left[\mu^{2}\right] } \\
& +\frac{1}{2} m^{2}\left(I_{(1)}\left[\mu^{2}\right]-I_{(1)}\left[M^{2}\right]+\Phi^{2}\right)+\frac{\lambda}{4}\left[\frac{3}{4}\left(2 I_{(1)}\left[\mu^{2}\right]-2 I_{(1)}\left[M^{2}\right]\right)^{2}\right. \\
& \left.+3\left(2 I_{(1)}\left[\mu^{2}\right]-2 I_{(1)}\left[M^{2}\right]\right) \Phi^{2}+\Phi^{4}\right]
\end{aligned} \\
& \mu^{2}=m^{2}+3 \lambda\left(I_{(1)}\left[\mu^{2}\right]-I_{(1)}\left[M^{2}\right]+\Phi^{2}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d} \mathcal{V}(\varphi)}{\mathrm{d} \varphi}=\Phi\left(m^{2}+\frac{3 \lambda}{2}\left(2 I_{(1)}\left[\mu^{2}\right]-2 I_{(1)}\left[M^{2}\right]\right)+\lambda \Phi^{2}\right)=0 \tag{23}
\end{equation*}
$$

Recalling $I_{(0)}\left[Q^{2}\right]=I_{0}\left[Q^{2}\right]$ (up to an infinite constant) and $2 I_{(1)}\left[Q^{2}\right]=I_{1}\left[Q^{2}\right]$, and noticing that for the case of $(1+1)$ dimensions, $\frac{1}{2}\left(I_{0}\left[\mu^{2}\right]-I_{0}\left[M^{2}\right]\right)+\frac{1}{4} M^{2} I_{1}\left[M^{2}\right]-\frac{1}{4} \mu^{2} I_{1}\left[\mu^{2}\right]=$ $\frac{\mu^{2}-M^{2}}{8 \pi}$ as well as $\left(I_{1}\left[\mu^{2}\right]-I_{1}\left[M^{2}\right]\right)=-\frac{1}{2 \pi} \ln \frac{\mu^{2}}{M^{2}}$, one can find that equations (21) and (22) with $D=1$ are consistent, respectively, with equations (A6) and (A7) for $B=0$ in [3] (Chang) (the normal-ordering mass M was taken as m there and m^{\prime} corresponds to μ here). Furthermore, the renormalized mass and coupling can be calculated as ${ }^{5}$

$$
\begin{equation*}
\left.m_{R}^{2} \equiv \frac{\mathrm{~d}^{2} \mathcal{V}(\Phi)}{\mathrm{d} \Phi^{2}}\right|_{\Phi=0}=m^{2}+3 \lambda\left(I_{(1)}\left[m_{R}^{2}\right]-I_{(1)}\left[M^{2}\right]\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\lambda_{R} \equiv \frac{1}{3!} \frac{\mathrm{d}^{4} \mathcal{V}(\Phi)}{\mathrm{d} \Phi^{4}}\right|_{\Phi=0}=\lambda \frac{1-6 \lambda I_{(2)}\left[m_{R}^{2}\right]}{1+3 \lambda I_{(2)}\left[m_{R}^{2}\right]} \tag{25}
\end{equation*}
$$

respectively. The above expression of λ_{R} is consistent with equation (3.44) in [1] (1980) and equation (3.19) in [1] (1985), and has no explicit dependence upon the normalordering mass M (just an implicit dependence upon M through m_{R}). This fact implies that Coleman's normal-ordering prescription is involved only in the renormalization of the mass parameter. Because the integral $I_{(2)}$ is finite for the case of $D<3$, the coupling does not require a further renormalization procedure. Substituting equation (24) into equations (21) and (22), one can get the GEP in terms of m_{R} instead of m and the resultant expressions for low dimensions are consistent with those in [1] (1985). Equation (24) reflects the relation between m and M_{R}, and has been discussed in detail for low dimensions in [11]. By the way, besides simplifying the renormalization procedure in low dimensions, Coleman's normal-ordering prescription makes it possible to investigate the symmetry restoration phenomenon in quantum field theory [11, 12]. As for the case of $D=3$, both equations (24) and (25) are no longer finite relations, and further renormalization procedure will be needed to make the GEP finite. Stevenson and his collaborators have investigated this problem and proposed two non-trivial $\lambda \phi^{4}$ theories [13, 1 (1985)]. Based on Coleman's normal-ordering prescription, one of the present authors (Lu) gave a further discussion on Stevenson's two non-trivial $\lambda \phi^{4}$'s [14] (in [14] one can find many other references related to this problem).

In conclusion, we have demonstrated that Coleman's normal-ordering prescription can be formally used in the functional integral formalism to renormalize the GEP for a class of

[^3]systems in low dimensions. This conclusion will also be valid for the finite temperature GEP [15, 16]. Before ending this paper, we point out that the above renormalizability is understandable from the viewpoint of Feynman diagrams. Coleman's normal-ordering prescription can make ultraviolet divergences disappear in the theory whose primitively divergent graph is just the one-loop diagram with only one vertex. The $(1+1)$-dimensional scalar field theories without derivative interactions are just such theories [3]. Hence, the finiteness of equations (16)-(19) with $D=1$ is conceivable. As for the case of $D=2$, the additional primitively divergent graphs are two- or multi-loop diagrams with multi-vertices. These additional divergent diagrams are not included in the GEP, because the GEP is just the sum of all possible cactus diagrams [17, 1 (1980)] (a cactus diagram consists of one-loop diagrams with multi-vertices and/or loop diagrams with one vertex). And so the GEP in $(2+1)$ dimensions can be made finite by Coleman's normal-ordering prescription. However, unfortunately, when $D=3$, the one-loop diagram with two vertices, which comprises GEP, is divergent (for $D=2$ such a diagram is finite), and so Coleman's normal-ordering prescription is not sufficient to make the $(3+1)$-dimensional GEP finite.

Acknowledgments

W-FL acknowledges Professor J H Yee's helpful discussions. This project was supported by Korea Research Foundation (99-005-D00011). The work of W-FL was also supported in part by the National Natural Science Foundation of China under grant no 19875034.

References

[1] Schiff L I 1963 Phys. Rev. 130458
Cornwall J M, Jackiw R and Tomboulis E 1974 Phys. Rev. D 102428
Barnes T and Ghandour G I 1980 Phys. Rev. D 22924
Bardeen W A, Moshe M and Bander M 1984 Phys. Rev. Lett. 521188
Stevenson P M 1985 Phys. Rev. D 321389
[2] Lu W F, Chen S Q and Ni G J 1995 J. Phys. A: Math. Gen. 287233
[3] Coleman S 1975 Phys. Rev. D 112088
Chang S J 1976 Phys. Rev. D 132778 (erratum for equation (A6): 1977 Phys. Rev. D 16 1979)
[4] Negele J W and Orland H 1988 Quantum Many-Particle System (New York: Addison-Wesley) Auerbach A 1994 Interacting Electrons and Quantum Magnetism (New York: Springer)
[5] Okopińska A 1987 Phys. Rev. D 351835
You S K, Kim C K, Nahm K and Noh H S 2000 Phys. Rev. C 62045503
Lu W F, Kim C K, Yee J H and Nahm K 2001 Phys. Rev. D 64025006
[6] Stancu I and Stevenson P M 1990 Phys. Rev. D 422710 Stancu I 1991 Phys. Rev. D 431283
[7] Boccara N 1990 Functional Analysis-An Introduction for Physicists (New York: Academic)
[8] Ramond P 1990 Field Theory: A Modern Primer (New York: Addison-Wesley)
[9] Naón C M 1985 Phys. Rev. D 312035
[10] Stevenson P M 1981 Phys. Rev. D 232916
Kaufmann S K and Perez S M 1984 J. Phys. A: Math. Gen. 172027
Stevenson P M 1984 Nucl. Phys. B 23165
[11] Lu W F and Ni G J 1998 Commun. Theor. Phys. 30595
[12] Lu W F, Ni G J and Wang Z G 1998 J. Phys. G: Nucl. Part. Phys. 24673
[13] Stevenson P M and Tarrach R 1986 Phys. Lett. B 176436
[14] Lu W F 1999 Mod. Phys. Lett. A 141421
[15] Okopińska A 1987 Phys. Rev. D 362415
Hajj G A and Stevenson P M 1988 Phys. Rev. D 37413
Haugerud H and Ravndal F 1991 Phys. Rev. D 432736
[16] Roditi I 1986 Phys. Lett. B 17785
Lu W F 1999 J. Phys. A: Math. Gen. 32739
Lu W F 2000 J. Phys. G: Nucl. Part. Phys. 261187
[17] Chang S J 1975 Phys. Rev. D 121071

[^0]: ${ }^{2}$ Here, the partial derivative with time $\partial_{t} \phi_{x}=\left.\left(\partial_{t} \phi_{x}\right)\right|_{t=0}$ should be regarded as the conjugate momentum operator $\Pi_{\vec{x}}$. For convenience of later comparison, we write the operator as its corresponding classical form.

[^1]: ${ }^{3}$ Note that \mathcal{H}_{x} in equation (3) is an operator in D-dimensional space at $t=0$, whereas the field ϕ_{r} and its derivatives in equation (7) are classical ones in v-dimensional Euclidean space. This is why we call the generalization developed in the present paper a formal generalization.

[^2]: ${ }^{4}$ Generally, different choices of φ will give rise to an identical result. One can find a detailed discussion on this point in appendix A of Stancu and Stevenson [6].

[^3]: ${ }^{5}$ Here, the definition of the renormalized coupling is slightly different from that in [1], because the coupling there is four times that here.

