
Gaussian effective potential and Coleman's normal-ordering prescription: the functional

integral formalism

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 393

(http://iopscience.iop.org/0305-4470/35/2/315)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 393–400 PII: S0305-4470(02)25403-7

Gaussian effective potential and Coleman’s
normal-ordering prescription: the functional
integral formalism

Wen-Fa Lu1 and Chul Koo Kim

Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea
and
Center for Strongly Correlated Materials Research, Seoul National University,
Seoul 151-742, Korea

E-mail: wenfalu@online.sh.cn

Received 24 May 2001, in final form 31 October 2001
Published 4 January 2002
Online at stacks.iop.org/JPhysA/35/393

Abstract
For a class of systems, the potential of whose bosonic Hamiltonian has a
Fourier representation in the sense of tempered distributions, we calculate the
Gaussian effective potential within the framework of the functional integral
formalism. We show that Coleman’s normal-ordering prescription can be
formally generalized to the functional integral formalism.

PACS numbers: 02.30.Sa, 03.50.−z, 45.20.−d

Recently, one of the authors, Lu, with his other collaborators obtained formulae of the Gaussian
effective potential (GEP) [1] for a relatively general scalar field theory (see equation (1)) in
the functional Schrödinger picture [2]. There, Coleman’s normal-ordering prescription [3]
was used, and accordingly these formulae have no divergences in low dimensions. Employing
these formulae, one can obtain the GEP of any system in a certain class of models, which
will be specified below, by carrying out ordinary integrations without performing functional
integrations. In this paper, we demonstrate that the same formulae of the GEP can also be
obtained within the functional integral formalism. In doing so, we also show that, although
quantities in the functional integral formalism are not operators, Coleman’s normal-ordering
prescription can be formally used for renormalizing the GEP in the cases of low dimensions.
We believe that our simple work is interesting and useful since the functional integral formalism
is important in quantum field theory, nuclear and condensed matter physics [4], and can be
used for performing some variational perturbation schemes [5, 6].

In this paper, we first generalize Coleman’s normal-ordering prescription to the functional
integral formalism. This formal generalization will be realized by borrowing the normal-
ordered Hamiltonian expression in the functional Schrödinger picture because the Euclidean
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action for a system has the same form as the corresponding classical Hamiltonian in Minkowski
space. Then following the procedure in [6], we calculate the GEP for a class of systems.
Finishing the above generalization, as an explicit illustration, we will perform a model
calculation for the λφ4 field theory.

Consider a class of systems, scalar field systems or Fermi field systems which can be
bosonized with the Lagrangian density

Lx = 1
2∂µφx∂

µφx − V (φx) (1)

where the subscript x represents x = (�x, t), the coordinates in a (D + 1)-dimensional
Minkowski space, ∂µ and ∂µ are the corresponding covariant derivatives, and φx the scalar field
at x. In equation (1), the potential V (φx) has a Fourier representation in the sense of tempered
distributions [7]. Speaking roughly, this requires that the integral

∫ ∞
−∞ V (α) e−Cα2

dα with a
positive constant C is finite. Obviously, quite a number of model potentials, such as polynomial
models, sine-Gordon and sinh-Gordon models, possess this property.

For the system of equation (1), the conjugate field momentum is expressed as x ≡
∂L

∂(∂tφx)
= ∂tφx and the Hamiltonian density is given by

Hx = 1
2∂tφx∂tφx + 1

2∂�xφx∂�xφx + V (φx). (2)

In a time-fixed functional Schrödinger picture at t = 0, one can normal-order the Hamiltonian
density Hx with respect to any given mass-dimension constant M as follows [2, 3]2:

NM [H�x] = 1
2∂tφx∂tφx + 1

2∂�xφ�x∂�xφ�x + NM [V (φ�x)] − 1
2I0[M2] + 1

4M
2I1[M2] (3)

where NM [· · ·] means the normal-ordering form with respect to M and

In[Q2] =
∫

dDp

(2π)D

√
p2 + Q2

(p2 + Q2)n
. (4)

Noticing the Baker–Haussdorf formula eA+B = eA eB e− 1
2 [A,B], with the commutator [A, B]

some c-number, one has

NM [V (φ�x)] =
∫

d�√
2π

Ṽ (�)ei�φ�x e
1
4�

2I1[M2] (5)

where Ṽ (�) is the Fourier component of the function V (α). In the functional Schrödinger
picture, when the Coleman’s normal-ordering prescription [3] is adopted to calculate the GEP,
i.e., when the normal-ordering Hamiltonian density takes the place of Hamiltonian density,
the GEP will be naturally finite for the case of low dimensions (D < 3) [2].

On the other hand, for equation (1), the generating functional for Green’s functions in the
functional integral formalism is given by

ZM [J ] =
∫

Dφ exp

{
i
∫

dD�x dt[Lx + Jxφx]

}
(6)

where Jx is an external source at x and Dφ the functional measure. Starting from equation (6),
one can define the effective potential [8]. However, in this functional integral, the integrand
is oscillatory. To avoid this oscillation, one usually adopts the so-called ε-prescription, i.e.
in the Lagrangian density, one adds an infinitesimal purely imaginary term, iεφ2

x , and takes
ε → 0 after finishing the functional integration. Instead of doing so, one can also make the
time continuation t → −iτ so that Minkowski space can be transformed into Euclidean space,
and after finishing the functional integration, one may return to Minkowski space. This time
continuation procedure is equivalent to the ε-prescription [8]. In this paper, we will choose
the continuation procedure.
2 Here, the partial derivative with time ∂tφx = (∂t φx)|t=0 should be regarded as the conjugate momentum operator
�x . For convenience of later comparison, we write the operator as its corresponding classical form.
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Through the time continuation t → −iτ , the generating functional ZM [J ] is changed as

Z[J ] =
∫

Dφ exp

{
−

∫
dνr

[
1
2∂τφr∂τ φr + 1

2∂�xφr∂�xφr + V (φr) − Jrφr
]}

(7)

with r = (�x, τ ) and ν = D + 1. This is the generating functional in the Euclidean space.
Here, we emphasize that in the above equation, taking the range of τ as [0, β] with the
inverse temperature β, letting Jr vanish and carrying out the functional integration over the
closed path φr |τ=0 = φr |τ=β , one can arrive at the canonical partition function of equation (1).
From equation (7) one can get the generating functional for the connected Green’s function,
W [J ] = ln(Z[J ]). The variational derivative of W [J ] with respect to J will give rise to the
vacuum expectation value of the field φr in the presence of Jr,

ϕr = δW [J ]

δJr
. (8)

Taking a Legendre transformation of W [J ], one can define the effective potential in Euclidean
space,

V(ϕ) = −W [J ] − ∫
dνrJrϕr∫

dνr

∣∣∣
ϕr=ϕ

(9)

where ϕ is independent of the coordinate r. Returning to the Minkowski space from
equation (9), one can get the effective potential in the Minkowski space, which is usually
referred to as the effective potential in quantum field theory.

In the exponential of the functional integrand of equation (7), the major part of the
integrand Hr = 1

2∂τφr∂τφr + 1
2∂�xφr∂�xφr + V (φr) takes the same form as Hx in equation (2).

Therefore, we argue that, if we change Hr in equation (7) into the expression3 NM [Hr ],
the GEP will be renormalized automatically in the low dimensions (D < 3). Note that in the
transformation between Euclidean space and Minkowski space, the integrals I(n)[Q2] appearing
in the functional integrations in Euclidean space,

I(n)[Q2] =




∫
dνp

(2π)ν
1

(p2 + Q2)n
for n 
= 0∫

dνp

(2π)ν
ln(p2 + Q2) for n = 0

(10)

are equivalent to In[Q2] in equation (4) which appear in the calculations in the functional
Schrödinger picture (up to some constant factor or an infinite constant for some n) [6]. For
example, I (0)[Q2] is equivalent to I0[Q2] (up to an infinite constant) and 2I(1)[Q2] to I1[Q2]
[6]. Thus, corresponding to equation (3), one can formally write downNM [Hr ] = 1

2∂τφr∂τ φr+
1
2∂�xφr∂�xφr + NM [V (φr)] − 1

2I(0)[M
2] + 1

2M
2I(1)[M2]. Changing Hr in equation (7) into the

form of NM [Hr ], we have

Z[J ] = exp

{∫
dνr

[
1

2
I(0)[M2] − 1

2
M2I(1)[M2]

]}

×
∫

Dφ exp

{
−

∫
dνr

[
1

2
∂τφr∂τ φr +

1

2
∂�xφr∂�xφr

− Jrφr +
∫

d�√
2π

Ṽ (�)ei�φr e
1
2�

2I(1)[M2]

]}

= exp

{∫
dνr

[
1

2
I(0)[M2] − 1

2
M2I(1)[M2]

]}∫
Dφ exp{−S[J ]} (11)

3 Note that Hx in equation (3) is an operator in D-dimensional space at t = 0, whereas the field φr and its derivatives
in equation (7) are classical ones in ν-dimensional Euclidean space. This is why we call the generalization developed
in the present paper a formal generalization.
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where S[J ] = ∫
dνr

[
1
2φr(−∇2

r )φr −Jrφr +
∫

d�√
2π
Ṽ (�) ei�φr e

1
2�

2I(1)[M2]
]

with ∇r the gradient
with respect to r in ν-dimensional Euclidean space. Up to here, we have introduced Coleman’s
normal-ordering prescription in the functional integral formalism. Actually, many years ago,
the normal-ordered Hamiltonian of the sine-Gordon field theory was used in the Euclidean
functional integral formalism to show the equivalence between the sine-Gordon and massive
Thirring field theories [9]. One will see that equation (11) will give rise to the same result
in [2].

Now we calculate the GEP of equation (1) from equation (11) by using the procedure in [6].
For this purpose, Z[J ] will be modified through the following steps. First, a parameter µ is
introduced by adding a vanishing term

∫
dνr 1

2φr(µ
2−µ2)φr into S[J ]. Then, shift φr to φr +%

with% a constant background field, i.e., S[J ] → ∫
dνr

[
1
2φr

(−∇2
r + µ2

)
φr−Jrφr−Jr%+SD

]
with SD = ∫

dνr
[− 1

2µ
2φ2

r +
∫

d�√
2π
Ṽ (�) ei�(φr+%) e

1
2�

2I(1)[M2]
]
. Third, in the last resultant

expression of S[J ], insert an expansion factor δ in front of SD . Thus, Z[J ] is modified as the
following Z[J, δ]:

Z[J, δ] = exp

{∫
dνr

[
1

2
I(0)[M2] − 1

2
M2I(1)[M2] + Jr%

]}

×
∫

Dφ exp

{
−

∫
dνr

[
1

2
φr

(−∇2
r + µ2) φr − Jrφr

]}
exp{−δSD} (12)

= [
det

(−∇2
r + µ2)]− 1

2 exp

{∫
dνr

[
1

2
I(0)[M

2] − 1

2
M2I(1)[M

2]

+
1

2

∫
dνr1Jrf

−1
rr1
Jr1 + Jr%

]}

×
∫ Dφ exp

{− ∫
dνr

[
1
2φr

(−∇2
r + µ2

)
φr − Jrφr

]}
exp{−δSD}∫ Dφ exp

{− ∫
dνr

[
1
2φr

(−∇2
r + µ2

)
φr − Jrφr

]} (13)

where det
(−∇2

r + µ2
)

is the determinant of
(−∇2

r + µ2
)

and f −1
rr1

= ∫ dνp
(2π)ν

1
p2+µ2 eip·(r−r1).

In equation (13), the result of the Gaussian functional integral
∫ Dφ exp

{− ∫
dνr[

1
2φr

(−∇2
r + µ2

)
φr − Jrφr

]} = [
det

(−∇2
r + µ2

)]− 1
2 exp

{
1
2

∫
dνrdνr1Jrf

−1
rr1

Jr1

}
has been

used. Correspondingly, W [J ] is modified as W[J, δ]. It is evident that, extrapolating W [J, δ]
to δ = 1, one recovers W [J ]. After the above modifications, expanding the logarithm of the
functional integral in W [J, δ] = lnZ[J, δ] as a series in δ (i.e. expanding first e−δSD and then
the logarithmic function), then truncating the series at the first order in δ, and finally carrying
out the functional integrations, one has

W [J, δ] =
∫

dνr

{
−1

2

(
I(0)[µ2] − I(0)[M2]

) − 1

2
M2I(1)[M2] + Jr% +

1

2

∫
dνr1Jrf

−1
r1r

Jr1

+ δ

[
1

2
µ2

[
I(1)[µ

2] +

(∫
dνr1f

−1
rr1
Jr1

)2
]

−
∫ ∞

−∞

dα√
π
V

(
α

√
2

(
I(1)[µ2] − I(1)[M2]

)
+

∫
dνr1f

−1
r1r
Jr1 + %

)
e−α2

]}
(14)

where the first-order term of δ arises from the functional integral∫ DφSD exp{− ∫
dν r[ 1

2 φr(−∇2
r + µ2)φr − Jrφr ]}∫ Dφ exp{− ∫

dν r[ 1
2 φr(−∇2

r + µ2)φr − Jrφr ]} . In equation (14), we have used the integral formula∫ ∞
−∞

dα√
2π

e− α2

2 +
√

2aα = ea and the result
[
det

(−∇2
r + µ2

)]− 1
2 = exp

{− 1
2

∫
dνrI0[µ2]

}
.
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Therefore, up to the first order of δ, equation (8) gives

ϕr = % +
∫

dνr1f
−1
rr1
Jr1 + δµ2

∫
dνr1dνr2f

−1
rr1
f −1
r1r2

Jr2 − δ

∫
dνr1f

−1
rr1

∫ ∞

−∞

dα√
π
V (1)

×
(
α

√
2

(
I(1)[µ2] − I(1)[M2]

)
+

∫
dνr1f

−1
rr1
Jr1 + %

)
e−α2

(15)

where V (n)(α) = dnV (α)
(dα)n = ∫

d�√
2π
Ṽ (�)(i�)nei�α . In the last equation, one can take4 ϕr =

ϕ = % and hence solve it to get Jr in terms of %. This forces Jr to become a series in δ and
vanish in the zeroth order of δ [6]. From equations (14) and (9), one can see that Jr truncated
at the first order of δ has no contribution to V(ϕ) up to the first order of δ. Therefore, we have
to take Jr = 0 for truncating equation (9) at the first order of δ and obtain the following result:

V(%) = 1

2

(
I(0)[µ2] − I(0)[M2]

)
+

1

2
M2I(1)[M2] − 1

2
µ2I(1)[µ2]

+
∫ ∞

−∞

dα√
π

e−α2
V

(
α

√
2

(
I(1)[µ2] − I(1)[M2]

)
+ %

)
. (16)

Obviously, the above equation is dependent on the arbitrary parameter µ. In accordance with
the ‘principle of minimal sensitivity’ [6, 10], µ can be determined by requiring that µ should
minimize V(ϕ). The stationary condition, ∂V(ϕ)

∂µ2 = 0, yields

µ2(ϕ) =
∫ ∞

−∞

dα√
π

e−α2
V (2)

(
α

√
2

(
I(1)[µ2] − I(1)[M2]

)
+ %

)
(17)

and the stability condition, ∂2V(ϕ)
(∂µ2)2 � 0, gives rise to

1 +
1

4
I(2)[µ2]

∫ ∞

−∞

dα√
π

e−α2
V (4)

(
α

√
2

(
I(1)[µ2] − I(1)[M2]

)
+ %

)
� 0. (18)

In order to investigate the symmetry-breaking phenomena,one usually needs another stationary
point condition dV(ϕ)

dϕ = 0. This condition yields∫ ∞

−∞

dα√
π

e−α2
V (1)

(
α

√
2

(
I(1)[µ2] − I(1)[M2]

)
+ %

)
= 0. (19)

Noticing the equivalence between I(n)[Q2] and In[Q2], and going back to the Minkowski
space, equation (16) with equations (17) and (18) will give the GEP of the system, equation
(1). We note that it is identical to that in [2]. We observe that, here, no renormalization
procedure is needed for the case of D < 3, because the first three terms in equation (16) and(
I(1)[µ2] − I(1)[M2]

)
are finite for D < 3. As for the case of D = 3, the first three terms

in equation (16) and
(
I(1)[µ2] − I(1)[M2]

)
are divergent, and so equations (16)–(19) have

divergences. Hence, when D = 3, Coleman’s normal-ordering prescription is not sufficient to
renormalize the GEP, and further renormalization procedures are needed. In fact, Coleman’s
normal-ordering prescription amounts just to renormalizing the mass parameter. For the case
of D = 3, one can further renormalize other model parameters and even the field to make the
GEP finite.

By way of explanation and justification,we consider theλφ4 field theory with the following
potential:

V (φx) = 1

2
m2φ2

x +
λ

4
φ4
x . (20)

4 Generally, different choices of ϕ will give rise to an identical result. One can find a detailed discussion on this
point in appendix A of Stancu and Stevenson [6].



398 W-F Lu and C K Kim

Employing the formulae
∫ ∞
−∞ α2ne−α2

dα = 2−n ·1·3·5 · · · (2n−1) and
∫ ∞
−∞ α2n+1e−α2

dα = 0,
one can easily finish the ordinary integrations over α in equations (16)–(19), and obtain

V(ϕ) = 1

2

(
I(0)[µ2] − I(0)[M2]

)
+

1

2
M2I(1)[M2] − 1

2
µ2I(1)[µ2]

+
1

2
m2

(
I(1)[µ2] − I(1)[M2] + %2

)
+
λ

4

[
3

4

(
2I(1)[µ2] − 2I(1)[M2]

)2

+ 3
(
2I(1)[µ2] − 2I(1)[M2]

)
%2 + %4

]
(21)

µ2 = m2 + 3λ
(
I(1)[µ

2] − I(1)[M
2] + %2) (22)

and
dV(ϕ)

dϕ
= %

(
m2 +

3λ

2

(
2I(1)[µ

2] − 2I(1)[M
2]

)
+ λ%2

)
= 0. (23)

Recalling I(0)[Q2] = I0[Q2] (up to an infinite constant) and 2I(1)[Q2] = I1[Q2], and noticing
that for the case of (1 + 1) dimensions, 1

2

(
I0[µ2] − I0[M2]

)
+ 1

4M
2I1[M2] − 1

4µ
2I1[µ2] =

µ2−M2

8π as well as (I1[µ2]−I1[M2]) = − 1
2π ln µ2

M2 , one can find that equations (21) and (22) with
D = 1 are consistent, respectively, with equations (A6) and (A7) for B = 0 in [3] (Chang) (the
normal-ordering mass M was taken as m there and m′ corresponds to µ here). Furthermore,
the renormalized mass and coupling can be calculated as5

m2
R ≡ d2V(%)

d%2

∣∣∣∣
%=0

= m2 + 3λ
(
I(1)

[
m2
R

] − I(1)[M2]
)

(24)

and

λR ≡ 1

3!

d4V(%)
d%4

∣∣∣∣
%=0

= λ
1 − 6λI(2)

[
m2
R

]
1 + 3λI(2)

[
m2
R

] (25)

respectively. The above expression of λR is consistent with equation (3.44) in [1] (1980)
and equation (3.19) in [1] (1985), and has no explicit dependence upon the normal-
ordering mass M ( just an implicit dependence upon M through mR). This fact implies
that Coleman’s normal-ordering prescription is involved only in the renormalization of the
mass parameter. Because the integral I(2) is finite for the case of D < 3, the coupling
does not require a further renormalization procedure. Substituting equation (24) into
equations (21) and (22), one can get the GEP in terms of mR instead of m and the
resultant expressions for low dimensions are consistent with those in [1] (1985). Equation
(24) reflects the relation between m and MR, and has been discussed in detail for low
dimensions in [11]. By the way, besides simplifying the renormalization procedure in
low dimensions, Coleman’s normal-ordering prescription makes it possible to investigate
the symmetry restoration phenomenon in quantum field theory [11, 12]. As for the
case of D = 3, both equations (24) and (25) are no longer finite relations, and further
renormalization procedure will be needed to make the GEP finite. Stevenson and his
collaborators have investigated this problem and proposed two non-trivial λφ4 theories
[13, 1 (1985)]. Based on Coleman’s normal-ordering prescription, one of the present authors
(Lu) gave a further discussion on Stevenson’s two non-trivial λφ4’s [14] (in [14] one can find
many other references related to this problem).

In conclusion, we have demonstrated that Coleman’s normal-ordering prescription can
be formally used in the functional integral formalism to renormalize the GEP for a class of
5 Here, the definition of the renormalized coupling is slightly different from that in [1], because the coupling there
is four times that here.
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systems in low dimensions. This conclusion will also be valid for the finite temperature GEP
[15, 16]. Before ending this paper, we point out that the above renormalizability is
understandable from the viewpoint of Feynman diagrams. Coleman’s normal-ordering
prescription can make ultraviolet divergences disappear in the theory whose primitively
divergent graph is just the one-loop diagram with only one vertex. The (1 + 1)-dimensional
scalar field theories without derivative interactions are just such theories [3]. Hence,
the finiteness of equations (16)–(19) with D = 1 is conceivable. As for the case of
D = 2, the additional primitively divergent graphs are two- or multi-loop diagrams with
multi-vertices. These additional divergent diagrams are not included in the GEP, because
the GEP is just the sum of all possible cactus diagrams [17, 1 (1980)] (a cactus diagram
consists of one-loop diagrams with multi-vertices and/or loop diagrams with one vertex).
And so the GEP in (2 + 1) dimensions can be made finite by Coleman’s normal-ordering
prescription. However, unfortunately, when D = 3, the one-loop diagram with two
vertices, which comprises GEP, is divergent (for D = 2 such a diagram is finite), and so
Coleman’s normal-ordering prescription is not sufficient to make the (3 + 1)-dimensional GEP
finite.
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